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Simulation of a Liquid-Liquid Floating Interface 

J. Stecki: 

The planar interface between two simple liquids interacting with 6-12 LJ poten- 
tials was simulated by molecular dynamics at a low temperature. The peculiar 
physical picture, the new "'breathing" mode, the 2 × 2 matrix of the structure 
factors Slk± ), and the interfacial dynamic structure factor S(k, c,J), are reported. 

KEY WORDS: breathing mode: floating interface; Goldstone mode; mis- 
cibility gap: simple liquids: structure factor. 

!. I N T R O D U C T I O N  

Simulations of liquid-liquid interfaces in the literature have not been very 
numerous [1].  Our work has been motivated by the following considera- 
tions. First, creating and maintaining a (planar) stable interface separating 
two immiscible simple liquids is easy compared with a single-component 
liquid-vapor system and there is a better chance of obtaining quantitative 
information. At the level of one-particle functions there is little to add to 
the existing body of knowledge [2, 3], though elsewhere [4] we are 
addressing the issue of density oscillations in the static equilibrium density 
profiles. See Ref. 5 for a different context. At the level of the two-point 
functions such as the density-density correlation function (DDCF), little is 
known in d =  3 beyond the (asymptotic) results of the standard capillary- 
wave (CW) theory [2, 3], whereas considerable progress has been made in 
d = 2  for models such as the solid-on-solid (SOS) model by both the 
numerical transfer matrix and the analytical calculations [6-9].  In fact the 
DDCF and the direct correlation function C(r~,r2) are both known. 
In d = 3 the shape of the DDCF or C in the inhomogeneous region known 
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as "the interface" is not known even in qualitative terms; we expect to 
obtain some information. In particular, the widely used and very successful 
"density functional theory" relies on ad hoc approximations made at the 
level of the two-point functions: the best one can currently do is to enforce 
that C is equal everywhere to the (known) Cb of the bulk liquid. Thus the 
shapes of D D C F  and of C in the interfacial zone are of interest. 

Second, there is a great current interest in systems with a surfactant 
present, but interfaces in those systems will be understood, in particular in 
quantitative terms, by contrasting with the same system without surfactant. 

Third, the dynamics of the interface has never been studied except for 
Ref. I, where the self-diffusion coefficient has been determined. Although 
the "simulation window" in frequency ¢o and wave-vector k is limited, some 
information on the intermediate scattering function l(k. t) can be obtained 
and even S(k, 09) sometimes may be calculated. 

In this paper we report some of the results for the low-temperature 
regime. The latter ought to correspond perfectly with the usual assump- 
tions of the CW theory. 

In Section 2 we describe the simulation setup and the model system. 
In Section 3 we discuss the "breathing mode" which we have discovered in 
our system. In Section 4 we describe the matrix of static structure factors 
S,j(k) in the interfacial zone, and in Section 5 we show some results on the 
intermediate scattering function l(k, t) and the dynamic structure factor 
S(k, o~). 

2. T H E  S I M U L A T I O N  SETUP AND T H E  I N T E R F A C E  

The rectangular volume periodic in all three directions V=  L.,. x Ly x 
L. with L,--- L,. is filled with a rectangular slab of N,, particles of species 
"a'" extending from z =  ( l /4 )L :  to z =  (3/4)L. and an identical slab of Nb 
particles of species "b" extending from z =  (3/4)L_ to z =  (5/4)L: equal 
modulo L. to z =  (1/4)L:.  We take N~, = Nh. The model particles interact 
with the Lennard-Jones (6-12) potential 

u~,.(r) = 4~[(a.,~./r) j-" - ~(,~J,')~ ] (1) 

and we take a~, = O'bb = O'ab, ~ = 1, and t:aa = Ebb. Thus particles "a" and "'b'" 
are identical. In this way we dispose of the unnecessary complications 
introduced by the difference in size or potential depth. For the U,b potential 
we take ct =0 .  Hence ~ = 1 corresponds to the full attraction of the LJ 
(6-12) potential and c~=0 corresponds to the limiting case of pure 
repulsion. A slab of bulk LJ liquid was duplicated and the two slabs 
were brought into contact; two planar interfaces near z = L:/4 and near 
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-=(3 /4 )L :  were thus created. Simulations have been performed for 
N =  N,, +Nb  equal to 1024, 2048, 4096, and 9196. Results are reported 
here for the following data point: volume V/ff 3= 7.5 x 7.5 x 23.0, number 
of particles N = 5 1 2 + 5 1 2 ,  overall density ptr3=0.7915, bulk density 
pry3=0.8408, temperature kT/e= 1.0, normal pressure p._.tr3/e=2.075, 
surface tension 7tr2/e=3.039, timestep 0.005tr(e/m) '/2, length of typical 
run ~ 0 . 5 x  10 6 timesteps, lowest k-vector ka=0.83 ,  and typical box for 
S(k) v~=L , . xLyx l . 4 t r .  The unit of time is a(e/m) ~/'-. The bulk phases 
were condensed liquids. The canonical MD simulations (NVT-MD) were 
performed as described in Ref. 10 with a Nose-Hoover  thermostat [10] in 
all simulations except for the adiabatic run used for extraction of the inter- 
mediate scattering functions. The time-reversible energy- and momentum- 
conserving Verlet algorithm was used [10]. 

The microscopic structure of the interface turned out to be surprising 
at first. The two liquid slabs clearly separate in space, forming a "sheet of 
vaccum" in between. Not only the equilibrium total density goes through 
a minimum but also the individual density profiles are shifted away from 
each other. At the low T =  1, each bulk phase consists of almost pure "a" 
or "b", respectively, i.e., the solubility of a in b and conversely are much 
too low to be observed; it is then meaningful to introduce the two "kinks" 
~(x ,  y), ~b(X, y) in terms of which the corresponding "number density 
operators," i.e., instantaneous microscopic number densities are defined for 
each instantaneous configuration 

p~(r) = p~rl(z - ( ,(x,  y)) (2) 

pb(r) = p~'7( - z  + ( d x ,  y ) )  (3) 

We find there is a gap between two kinks, 

~(X, y) ~(b(X, y)-- (a(X, y) (4) 

which need not be constant. Here q (x )=  1 if x > 0 ,  q ( x ) = 0  if x < 0  is the 
Heaviside function. A is the local thickness of the fluctuating sheet of 
vacuum. At the state point reported here, ( A )  was of the order of 0.8-1.1a. 

This picture can be understood as follows: Our two simple liquids 
separate for energetic reasons, i.e., because a-a or b-b interactions are 
more favorable than a-b  interactions. Effectively, the two liquid slabs repel 
each other and would fly apart were it not for the geometry of the finite 
volume. The pressure p..  is positive. These effects no doubt are emphasized 
by our choice of interactions but, I believe, are general. 
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3. DYNAMICS OF T W O  L I Q U I D  SLABS 

At low temperatures and liquid densities, the two slabs of bulk liquids 
"a'" and "'b" are incompressible. The total linear momentum P is conserved 
by the MD algorithm, the total linear momentum P'~(t), of "a" particles 
(all concentrated in the "a"-slab) need not be conserved. Only 

P=(t)= P~(t) + P~(t)= 0 (5) 

as we enforce P = 0  at time t = 0 .  A typical plot of (P~(0) P'='(t)> is shown 
in Fig. I. 

Clearly we see a separate oscillatory mode. In the continuum approx- 
imation (and assuming that bulk "'a'" contains no "b's" and conversely), the 
interaction of two slabs is 

U,,h=np,,p~A[A s./90-~.3 -~/3] (6) 

where ,4 = L,L,. is the area and 3 is the distance (gap) between two slabs. 
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direction. The x coordinate is (number of timesteps)/10. 
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For our choice ~. = 0, U,a, is purely repulsive. Assuming the slabs incom- 
pressible, at equilibrium we have 

p, ,  .4 = - (dLl,,,,/dA) ( 7 ) 

This determines Ao, the gap at static equilibrium. Assuming harmonic 
motion we calculate 

(1/2) U" = 36U,,b(A,,)/A~ (8) 

and the circular frequency (for two identical slabs, putting mass m = 1 ) is 
given by 

ttJ 2 = rrp] A( 3.2/N,, )/A,'," (9) 

The equilibrium gap is controlled by the normal pressure p::: increasing 
the pressure by diminishing L: (volume I," at constant .4 ) forces a decrease 
in A,,. For our data point, semiquantitative agreement is obtained with the 
aid of Eq. 191, to= 1.32 for A.=0.909 and t o=  1.49 for A.=0.887 are 
predicted as against o)= 1.38 determined from Fourier analysis of data 
shown in Fig. 1 (and of several other runs). 

Clearly the mode we are describing is characteristic of an interface of 
a confined fluid and is in this sense a finite-size effect. It will be present in 
a variety of situations. 

If the compressibility of the liquid slabs is not neglected, for two slabs 
separated by two gaps and joined by periodicity in the _--direction. the 
center-of-mass positions Z~ and Z,  must be now related by 

Z : =  Z i  + l j /2 + At +/_,/2 (10) 

with the constraint 

/~ +A,  + I 2 + A , = L _  

Also, Eq. (61 is generalized to 

U =  U~,(I"~) + L/',,d3,) + Uh{ l"_,) + U,,b(A2) (11) 

where I/t =A/ j ,  I , ' , = A I , .  The second derivatives of U require now the 
compressibility of bulk liquids, but at these frequencies the static com- 
pressibility might better be replaced by the high-frequency bulk modulus. 
The dynamics is described by four coordinates ZL, Z_,, A~, and A, with one 
constraint and, in the harmonic approximation, by the 4 x 4  matrix of 
second derivatives of U. The theory of small vibrations [11] leads to a 
determinantal equation of the form LX o -  co 2 Y,il = 0 with known elements 
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.V 0 and ) ' ,  of matrices X and Y. U,,h(A,) is now also couplcd to lj through 
the P,,th, term. A thorough analysis of the resulting frequencies will be 
published elsewhere; so far from our calculations, only one frequency 
results. Simulation shows there is at least a second frequency. 

Increasing N decreases ~o: an increase in the surface area A due to 
capillary waves will complicate the simple notions outlined above, as the 
boundary of the slab will not be flat anymore. 

4. STATIC S T R U C T U R E  FACTORS 

The static structure factor is [13] 

S(k)  = ( p  

where 

k P k  ) 12) 

[)k = E ¢'ikrs 

I 

is a Fourier component  of the density p(r). It is a well-known prediction 
of the CW theory that the DDCF's  in the plane of the interface as Ilk 2 in 
the absence of damping 

(~ k S k ) ~  l / (k2 + D) (13) 

where ~k is the well-known (Fourier-transformed) kink introduced in 
Section 2. In what follows k denotes the Fourier vector k . - ( k , , k , . ) .  
Within the kink approximation the density p(z)  by Eqs. (2) and (3); now 
we approximate well the l.h.s, of Eq. (13) by collecting averages (,Okp k),, 
in a volurne "'r~.,'" which is a parallelepiped L~ x L,. x ( z , , -  z;) centered on 
the interface ~. =(, = Z,,o- (z,, + z;)/2. Now 

(z ;  d -  1 "-'/ - d:~ p(:~; x~, .v~) p(:_, : .x'~, Y2) 
• ='u * ,--u 

= (~(x,, . v , ) -  zD(~(.x2, Y 2 ) -  :;) x const. 

and with translational invariance in the x and v directions, for k # 0, 

(14) 

(~ k~k) =cOnst.× (PkP k)a (15) 

For a low temperature, it is possible to define the kink for each 
microscopic configuration. One way of constructing the kink [ I ]  consists 
of making a grid in the xy plane and finding in each square the particle 
with extremal z coordinate. The collection of these z(x, .v) coordinates may 
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then be used to construct smooth ~(.x'. y) surfaces. A better construction 
takes into account multiple values of height at a given point on the surface. 
in the form of overhangs or folds, and cavities. We introduce a fictitious 
particle which probes the shape of the surface but does not affect the real 
particles of the system. We assume a hard-sphere interaction, with collision 
diameter d in units of a between the probe and the real particles; d =  1/2 
corresponds to a point probe. Starting from r=(O.O.z , . ) ,  the probe 
attempts to penetrate without overlap into the bulk fluid on one side of the 
interface. The surface generated by the probe is a collection of spherical 
segments, each of radius d. If d is small, the spherical segments may become 
disconnected; if d is chosen "'too large," the overhangs and cavities will be 
"smoothed over." In either case the construction of ~(x. y) from a single 
microscopic configuration does involve an element of the arbitrary: Either 
the size of the grid or the collision diameter of the probe must be given. On 
the scale of small k any reasonable choice of d not too different from d = 1 
will produce the same result. Moreover, with d =  1, Eq. (15) was found to 
be verified within the accuracy of the data. The safest route to unam- 
biguous quantitative information is through the DDCF.  Thus we have 
extracted four structure factors. 

S~/~(k I -  (P~,P"~ k ),, 

for k 4-O. The limit k = 0 must be treated separately 

(16) 

S~t,(O) = ( N ~ N I , ) , , -  ( N~),, ( Nt~), (17) 

The average over box v,,, ( . . . ) ,  is a grand-canouical average with fixed 
volume I" and variable N,. The conditions for stability of this subsystem 
are S ~ > 0  and Det IISII >0.  

For k = 0 tile fluctuation of N = N,, + Nb in volume I,,, is also positive 
and related to the compressibility of the subsystem in t,,; therefore we 
construct the sum (also for k :~0) 

SNN = S,,,, + S,,b + Sb,, + Shb ( S,,b = SI,,, ) (18) 

We found that all four S's display a l/k'- divergence but SNN displays none. 
Its weak k dependence is quite like S ( k ) i n  bulk [4].  SNN is one of the 
Bhatia Thornton structure factors [15. 16] used to convert S~t ~ 6y.~ ~Sy/~ to 
a sum of 2 squares [ 14]. Here l* is the chernical potential. Alternatively, we 
introduce a linear transformation to I~,, + Itb. --/~,, +/ tb,  which produces 
SNN, SNd, and S o d -  S~,~,- 2S~,, + Sbb. Both SNd and Saj diverge as I/k 2. 
The exact diagonalization of the 2 x 2 matrix S ensures there will be no 
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mixed term: of the two eigenvalues ,;.j. 22, one shows no divergence and the 
other  does. It is practical to consider the inverse matrix S ~ and its eigen- 
values 1,,,',;.~, 1/;.2: then 

1/22(k ) = co + k-'c2 + k4c'4 + . . .  (19) 

Quant i ta t ive  agreement,  within the accuracy of our  data,  was obtained by 
first interpolat ing Sad to its value at k = 0 and sub t rac t ing - - thus  assuming 
S ~  Sew + Sb,,~u,k~--to obtain the CW contr ibut ion.  We find D = 0  [cf. 
Eq. (13)].  the coefficient of k-" equal to [:~',, with excellent accuracy, and the 
(bending) coefficient of k 4 positive. If we interpret the entire CW 
denomina to r  [cf. Eq. (13)] as fiT(k), we find 7(k)=7(O)+hak2+h~,k4+... 
with ha = +0.38, h~,= +0.04.  all in LJ units. These plots cannot  be shown 
through lack of space but see Fig. 2. Note  how the short-dis tance peak in 
the bulk near k - ' = 4 0  is broadened and shifted to lower k in the interface. 
The density in c,, is much lower than the bulk density ~0.8408. 

2.5 

1.5 

0.5 

x 

; ~  ~i~ O x x x  

, J  

-0.5 20 610 ; I I I 
0 40  8 100 120 140  160  

k 2 

Fig. 2. Structure factors 5",, as defined by Eqs. (16) and (17) and Sh,a~ determined fiom a 
large box in tile middle of "'a'" phase--normalized to allow for a common plot: S.,,,.'N., 
(diamonds), S , h ( N , + N  b) (crosses)..S'hb:Nh (squares). Sh,a~Wh,,, (X's). Here N,,=21.87. 
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5. D E N S I T Y - D E N S I T Y  C O R R E L A T I O N S  l(k, t) a n d  S(k, w) 

The dynamics of fluid surfaces have been studied experimentally by 
light-scattering and the theory based on macroscopic hydrodynamics has 
been extensively developed over decades, in its many variants summarized, 
e.g., by Loudon [17]. He developed i.a. the case of two liquids in contact 
(also with identical parameters) separated by a thin film (which may be 
vacuum) [17]. A statistical and hydrodynamic theory of Desai and Grant  
[18] extended the work of Turski and Langer [19]. In essencc the macro- 
scopic theory predicts, for small k and co, the dispersion relation ¢,J-" ~ k ~, 
which is tmohtahuthle from the CW theory as we know it; in Ref. 18 it is 
demonstrated how the latter leads to a k 4 instead of the correct k 3 

dependence. There are many reasons for further research either by analytic 
theory or by simulations: a lack of theory of transport coefficients in the 
interface, validity of macroscopic hydrodynamics at large k and/or co, the 
connection of elastic coefficients introduced by M. Baus [20] with experi- 
ment or simulation, etc. There is an early attempt in Ref. 1 but limited to 
self-diffusion. We are currently studying other transport coefficients by 
simulation [21]. Loudon [17] discusses the interplay of three functions: 
¢o,:.p(k) ~ k 13 21 damping frequency o~t~ = qk'-/p, and the sound dispersion 
relation co = ok. Unfortunately, the simulation window is situated near the 
two crossings of these three lines. We have made a study of the inter- 
mediate scattering function of the interface 

l,,(k, t ) -  (p,,(k. t )p~ , ( - k .  0)), ,  120) 

where 

N,I 

p,,(k, t )= ~ e ik''c'' 
/ E  a 

(21) 

The interracial box r,, is defined in Section 4. Then S,,,(k. oJ). abbreviated 
to S(k, co), is defined as 

f ~ dte l , (k ,  t) - -  S(k, co)= 2Re , .... (9-~) 
J 

The autocorrelation function l(k. t) is determined from a sequential record 
of p,,(k, t); the subsequent Fourier transformation is marred by truncation 
artifacts and statistics, which is never good enough for long times. Due to 
lack of space we do not show plots of In(k. t) and Ib~,tk(k, t), but generally 
the initial decay is much slower for I,,, especially for low values of k. 
Figure 3 shows a comparison of S(og)/N,, with Sbulk(O))/Nbulk for a low 
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value of k2: for higher values of k 2 the two curves differ much less at all 
values of (,~. Asymptotic decay ~o9-4 predicted by Desai and Grant [18] 
has been found, as well as ~o -" decay of Sh.~k(CO). 

Experimental Sb,,ik(k. to) have been interpolated [22] by a sum of 
three modes. 

S ~  Re 
-I I 

A,(k)/[i(u+ zi(k 
i= I 

] (23)  

with A.(k) and z.(k) real and z+t =c.c.(z j). This semiempirical form is 
compatible with hydrodynamics [22] and also with interracial hydro- 
dynamics of Re['. 18 for a particular choice of the parameters which are in 
Eq. (23) free functions of k. This expression can be transformed from o) to 
t variable: under the assumption that the resulting expressions can also be 
used for short times, these are being used for a direct estimate of the 
damping coefficient(s ). 
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